




SAND97-3010/1     Distribution
 Unlimited Release        Category UC-705

Printed January, 1998

A Graph-Based Network-Vulnerability Analysis System

Laura Painton Swiler
Systems Reliability Department

Cynthia Phillips
Applied Mathematics Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0746

Timothy Gaylor
3M, Visual Systems Division

Austin, TX 78726

Abstract
This report presents a graph-based approach to network vulnerability analysis.  The
method is flexible, allowing analysis of attacks from both outside and inside the network.
It can analyze risks to a specific network asset, or examine the universe of possible
consequences following a successful attack. The analysis system requires as input a
database of common attacks, broken into atomic steps, specific network configuration and
topology information, and an attacker profile.  The attack information is “matched” with
the network configuration information and an attacker profile to create a superset attack
graph.  Nodes identify a stage of attack, for example the class of machines the attacker has
accessed and the user privilege level he or she has compromised.  The arcs in the attack
graph represent attacks or stages of attacks.  By assigning probabilities of success on the
arcs or costs representing level-of-effort for the attacker, various graph algorithms such as
shortest-path algorithms can identify the attack paths with the highest probability of
success.



2

CONTENTS

1. Introduction ............................................................................................................. 1
2. Configuration Files and Attack Templates................................................................. 4

Configuration files .................................................................................................... 4
Attacker Profiles....................................................................................................... 4
Attack template ........................................................................................................ 5

3. Generating the Attack Graph .................................................................................... 6
4. Analysis Methods ..................................................................................................... 9
5. Example:  Password Guessing ................................................................................ 10
6.  Conclusions........................................................................................................... 13
References.................................................................................................................. 14
Figures ....................................................................................................................... 15
Appendix.............................................................................................. SAND97-3010/2

FIGURES

Figure 1. Example Template for Anonymous ftp attack............................................... 15
Figure 2. Graph Generation Example.......................................................................... 16
Figure 3. Test Network .............................................................................................. 17
Figure 4. Password Guessing Attack Template ........................................................... 18
Figure 5. Attack Graph: Password Guessing on Test Network.................................... 19
Figure 6. Shortest Path Algorithm Solution Method.................................................... 20



1

1. Introduction
This research effort was motivated by the need for a better methodology to perform risk
and vulnerability analyses of computer networks.  This problem is extremely important to
the military and civilian infrastructure today.  For example, the Presidential Commission
on Critical Infrastructure recommended increasing spending to a $1B level during the next
seven years.  The Commission recommended that this money be heavily focused on cyber-
security research, including vulnerability assessment, risk management, intrusion detection,
and information assurance technologies (Commission Report, Oct. 1997).  In this paper,
we describe a systematic analysis approach that can be used by persons with limited
expertise in risk assessment or vulnerability analysis to (1) examine how an adversary
might be able to exploit identified weaknesses in order to perform undesirable activities,
and (2) assess the universe of undesirable activities that an adversary could accomplish
given that they were able to enter the network using an identified weakness.

This LDRD was funded in FY 1997.  Originally it was to be a two-year LDRD.  The Risk
and Reliability IAT Review Committee decided not to renew funding for this LDRD in FY
1998 because of its similarity to other network related proposals and research funded at
Sandia.  This report documents the progress that was made in FY 1997, and presents the
network vulnerability modeling approach as far as we have been able to take it.  As such,
this report can be used as a starting point for further work in this area.  The LDRD team
members who worked on this feel that a significant amount of work remains to be done
before our ideas could be turned into a marketable prototype software tool, but we feel
this is a worthwhile goal.

Background
The original LDRD proposal had a three-pronged approach:
1.  Development of risk sub-models.  This refers to categorizing known vulnerabilities and

attacks according to the type of network components that are susceptible.
2.  Develop a “deductive” risk assessment method, which will examine how an adversary

might be able to exploit identified weaknesses in order to perform undesirable
activities.

3.  Develop an “inductive” risk assessment method, which will examine the set of
undesirable activities an adversary could accomplish given that they entered the
network.

With respect to (1) above, we have documented  the classes of networking components
(e.g., workstations, routers) and network service applications (e.g., mail services,
firewalls) that are vulnerable to attack,  the classes of known attacks, and the current
classes of defenses that are used to deter or repel these known classes of attacks (LDRD
Task 1 Memo, May 30, 1997).  We also spent a significant amount of time identifying the
characteristics of networks that need to be incorporated into a risk assessment (RA)
method.  Ideally, a network-vulnerability risk-analysis system should be able to model the
dynamic aspects of the network (e.g., virtual topology changing), multiple levels of
attacker ability, dynamic behavior of a single attacker (e.g., learning), multiple



2

simultaneous events or multiple attacks, user access controls, and time-dependent, ordered
sequences of attacks.

Probabilistic Risk Assessment (PRA) techniques such as fault-tree and event-tree analysis
provide systematic methods for examining how individual faults can either propagate into
or be exploited to cause unwanted effects on systems. For example, in a fault-tree a
negative consequence, such as the compromise of a file server, is the root of the tree.
Each possible event that can lead directly to this compromise  (e.g., an attacker gaining
root privileges on the machine) becomes a child of the root.  Similarly, each child is
broken into a complete list of all events which can directly lead to it and so on.  Wyss,
Schriner, and Gaylor (Wyss et. al) have used PRA techniques to investigate network
performance.  Their fault tree modeled a loss of network connectivity, specifically the “all
terminal connectivity” problem.  Physical security and vital area analyses have also
successfully used PRA techniques (Stack and Hill). Since PRA methods are able to
measure the importance of particular components to overall risk, it seems that they could
provide insights that can help design networks that are more inherently resistant to known
methods of attack. These methods, however, have limited effectiveness in the analysis of
computer networks because they cannot model multiple attacker attempts, time
dependencies, or access controls (see LDRD Task 2 Memo, March 17, 1997).  In
addition, fault trees don’t model cycles (such as an attacker starting at one machine,
hopping to two others, returning to the original host, and starting in another direction at a
higher privilege level).  Methods such as influence diagrams and event trees suffer from
the same limitations as fault trees.

The major advance of our method over other computer-security-risk methods is that it
considers the physical network topology in conjunction with the set of attacks.  Thus, it
goes beyond the scanning tools such as the SATAN (Security Administrator Tool for
Analyzing Networks) tool that are currently available which check a “laundry list” of
services or conditions that are enabled on a particular machine.  For example, SATAN
checks for the following vulnerabilities on UNIX based systems:

1. Are NFS file systems exported to unprivileged programs?
2. Are NFS file systems exported to arbitrary hosts?
3. Is X server access control disabled?
4. Is there a writable anonymous FTP home directory?
5. Is there an insecure version of sendmail in use?
 …
All the vulnerabilities SATAN finds are well known and have either bulletins and/or
patches from an incident response team or a vendor.  SATAN is a useful network analysis
tool and can provide a system administrator with a set of items to patch or fix.  However,
it cannot identify paths of attacks, alternative network configurations that would be more
robust, or linked attacks such that a combined sequence of attacks would do more harm
than an individual attack.



3

Our approach to modeling network risks is based on the idea of an attack graph. Each
node in the graph represents a possible attack state.  A node will usually be some
combination of physical machine(s), user access level, and effects of the attack so far, such
as placement of trojan horses or modification of access control.   Edges represent a change
of state caused by a single action taken by the attacker (including normal user transitions if
they have gained access to a normal user’s account) or actions taken by an unwitting
assistant (such as the execution of a trojan horse).  Figure 4 gives an example attack
graph, which will be explained more fully when we describe attack graphs in  section 2.

Since the generation of an attack graph will quickly become extremely difficult for one
person to build given the combinatorial explosion of the nodes and paths, we propose a
method which can automatically generate the graph.  The generator requires three types of
input:  attack templates, a configuration file, and an attacker profile. Attack templates
represent generic (known or hypothesized) attacks including conditions, such as operating
system version, which must hold for the attack to be possible.  The configuration file
gives detailed information about the specific system to be analyzed including the topology
of the network and configuration of particular network elements such as workstations,
printers, or routers.   The attacker profile contains information about the assumed
attacker’s capabilities, such as the possession of an automated toolkit or a sniffer as well
as skill level.  The attack graph is a customization of the generic attack templates to the
specific network specified in the configuration file and the attacker profile.  If an attack is
possible in this network, its edge weight (probability or cost) will be a function of
configuration parameters and/or attacker skill level.  Though attack templates represent
pieces of known attacks or hypothesized methods of moving from one state to another,
their combinations can lead to descriptions of new attacks.  That is, any path in the attack
graph represents an attack, though it could be cobbled together from many known attacks.

Once the attack graph has been generated, we can apply analysis methods to determine
high-risk attack paths. As a preliminary tool for analyzing the graph, we chose a shortest-
path algorithm.  If we attach a probability or cost to each arc, a shortest-path algorithm
can find the attack path with lowest cost or highest probability of success, provided the
success probabilities can be modeled as independent.  The graph may also be used to run
simulations.  Additional analysis methods will be explained in more detail in Section 4.

The remainder of the paper is organized as follows.  Section 2 gives a more detailed
description of attack templates, the configuration file, and attacker profile.  Section 3
describes how to generate the attack graph from the attack templates and configuration
file.  Section 4 discusses analysis methods.  Section 5 gives a detailed example, applied to
a test network we have built.  Section 6 provides some concluding remarks.



4

2. Configuration Files and Attack Templates
This section explains the inputs required for our method:  configuration files, attacker
profiles, and attack templates.

Configuration files
The configuration file contains information relevant to operating system, network type,
router configuration, and network topology.  More specifically, each device (i.e.,
workstation, printer, file server, etc.) should have the following information:

1. Machine class: workstation, printer, router, etc.
2. Hardware type: e.g., SUN SPARCstation 5
3. Operating System
 a.   O.S. patches that have been installed.
4. Users (Initially just the classes of users, i.e. root, normal, privileged.)
5. Configuration
 a.   Ports enabled

b.  Services enabled
c.  Any intrusion detection applications installed

4.  Type of network(s) the device is on (Ethernet, FDDI, ATM, etc.)
5.  Physical link information such as type of communications media

A configuration file also includes a graph of the topology of the network.  Building and
maintaining configuration files by hand will be a tedious, time-consuming and error-prone
task which could seriously limit the utility of the system.  Therefore, we envision an
automated tool that will automatically generate and maintain this configuration file.  For
example, a root-level daemon on each network component can periodically send
information to a central server.  The configuration file could be based upon the
information available from a tool like SATAN, augmented to match the conditions in the
set of attack templates.  We hope the system administrator will have reasonable defenses
in place to protect this data when using the tool.  For example, it may only be available
online in one place while the administrator is running analyses.

Attacker Profiles
The attacker profile contains information about an assumed attacker’s capabilities, such as
the possession of an automated toolkit, a sniffer, etc.  The attacker profile also contains an
assumption about the skill level of an attacker, which is used to determine the probability
of success for particular attack methods.  The attacker profile represents the initial
capabilities of the attacker in the same way that the configuration file represents the initial
state of the network.  To assist the analyst, default profiles for various attacker skill levels
such as novice vs. expert could be provided.  The network owner’s security policies and
strategies can be guided by the level of attacker they wish to strongly deter and their
available budget.



5

Attack template
Attack templates represent generic steps in known attacks, including conditions which
must hold for the attack to be possible.  Each node in the attack template represents a
state of an attack, as detailed below.  The nodes are distinguishable, and therefore, each
edge represents a change in state on one or more devices.  Examples of state changes are:
a file was changed, a configuration setting was altered, an executable was run, etc. An
example of attack templates using the following definitions and fields is shown in Figure 1.
A more complete list of attack templates is shown in the Appendix (SAND 97-3010/2).
These templates have varying degrees of aggregation and completeness, and they do not
all fit into our definition.  However, they are provided for information purposes.   For
more specific details about Java attack templates, see (Harris, 1997).

Nodes have the following fields:
1.  User level: Possible user levels include: none, guest (anonymous), normal user,

privileged user, root, or system administrator.
2.  Machine(s): For the attack templates, the machine field will most likely be

used to specify an individual machine or set of machines, all machines on a
subnet, or all machines on multiple subnets.  In the attack templates, this field
contains placeholders (variables) that are instantiated in the attack graph.

3.  Vulnerabilities:  The vulnerabilities field can be used to indicate changes to
the original configuration caused by attacker actions.  When building the attack
graph, the vulnerabilities "overwrite" the relevant portions of the configuration
file for a given node.

4.  Capabilities: The capabilities field can include physical access to part of the
network, installation of a trojan horse, delivery of mail or an applet with
executable content, or installation of a sniffer on an edge of the network.  It
can also indicate other programs that the attacker has successfully installed or
has access to, such as crack programs, root kits, etc.  The capabilities gained
can locally overwrite the attacker profile in the same way that the
vulnerabilities field will overwrite the configuration file.

5.  State: The state field is primarily used to break attacks into atomic pieces. An
attack may require several steps, each of which could fail and none of which
adds a new capability, vulnerability, etc.  The states distinguish the nodes by
indicating progress in the attack.

Edges in an attack template represent actions by the attacker or his/her
victim/unwitting assistant.  They can also indicate an event such as the detection of a
particular type of packet on a network by some hardware and/or software under attacker
control. To allow maximum detection of new attack sequences, these events should be
atomic and nontrivial (probability of success is strictly between 0 and 1).  Probability-one
edges must change the environment (introduce a vulnerability, change user level, etc.).
Each edge has conditions on the users and/or machines.  If all the conditions are met, the
attack succeeds with a given probability and/or cost.  Our examples model this measure as



6

static, but it can more generally be a function of configuration and attacker experience.  If
a user is only interested in viewing the possible universe of attacks regardless of
cost/success probability, then these functions could be extremely simple.

A number of issues are not completely resolved.  There is some flexibility in assigning
conditions to the arcs (requirements for the attack) vs. the nodes (part of the state).   For
example, possession of a root kit may be required for a certain attack.  It can be made a
condition of the edge (hence the edge is not added to the attack graph unless the attacker
possesses a root kit) or it can be made a state of the start node (thus the attacker must
have a root kit in order for the node to be reached in the first place).  In addition, one
must carefully chose levels of machine aggregation.  Generating nodes for all possible
subsets of machines will be impossible even for small systems.  However, we believe the
design described above can model a wide variety of attacks.  For example, we have
developed a set of templates for several attacks in each of the following classes:  sendmail,
ftp, telnet, Windows NT, and Java.  Furthermore, the system has sufficient flexibility to
evolve smoothly as new, previously unanticipated modeling needs arise.

The attack templates are “matched” to the configuration file and the attacker profile to
create an attack graph which contains all of the possible attack paths for the particular
network in the configuration file.  Paths are labeled by cost, effort, or probability of
success, which are functions of attacker capability and level of knowledge.  The following
section discusses the attack graph generation.

3. Generating the Attack Graph

In this section we describe how one might generate the attack graph from a configuration
file, an attacker profile, and a database of attack templates.  The latter part of this section
also discusses implementation issues.  As described before, nodes of the attack graph
represent stages of an attack, and edges represent an attack that changes the state.  In
general the nodes of the attack graph look like nodes of the attack templates instantiated
with particular users and machines.  Edges are labeled only by a probability-of-success (or
cost) measure, and a documentation string for the user interface.  For ease of exposition,
for the remainder of this section, we will call the measure the weight of  the edge.  This
weight is determined by an instantiation function associated with each edge of an attack
template.  This function accesses the configuration file and the attacker profile. If an edge
goes from node u to node v, then we call node u the tail of the edge and node v the head
of the edge.

We now describe how the attack graph could be generated by building backwards from a
goal node.  One could also build forward from a start node (to explore the universe of
possibilities) or assume both a start and a goal node.   We illustrate this description with
the simple example in Figure 2.  The attacker profile, which is not shown in Figure 2 for
space reasons, assumes that the attacker has physical access to B and the boot CD.  We



7

maintain a queue of generated nodes which have not been processed.  Initially this queue
contains only the goal node and nodes are added as they are created.

Start with the goal node:  achievement of user-level access on machine M.  The graph
generator checks the database of attack templates and identifies all edges whose heads
match the goal node.  Assuming this database contains only the two templates shown in
Figure 2, we find two matches, namely the head of each attack template.  Consider the
first template for an rlogin attack.  Machine M matches the variable M2 in the template.
The instantiation function can then generate the tail node (node N1) by generating all
(user, machine) pairs that meet the constraints (the user has an account on this machine
and M, and an appropriate rlogin file on M).  Note that if machine M has rlogin disabled,
then node N1 would not be generated.  On the assumption that machines A and B can
communicate with M (given the rlogin file), the probability of the edge from node N1 to
the goal is 1.  Node N1 is an OR node, meaning that achievement of any (user, machine)
pair suffices.

The goal node also matches the last node of the second template for physical access.
Machine M matches the variable X and the instantiation function creates node N4, which
in turn generates N 5.  However, the attacker does not have physical access to M.  Thus,
the nodes N4 and N 5 are marked with a dotted line to show that under existing conditions,
they would not be reachable from the start state.  There could be other attack templates
which would lead to physical access to M, and then these nodes would be enabled.  In this
case, the capability of physical access to M is an addition (or overwrite) to the attacker
profile.

Since there are no more matches for the goal, node N1 is removed from the queue and
matched against the database against both heads and tails.  In principle, it can again match
with the head of the rlogin attack.  However, assuming transitivity (i.e. that a user has
rlogin set up symmetrically for all his accounts), applying this edge again will give no new
information.  Recognizing and preventing this in all cases is still a research issue. Node N1

also matches with the last node of the second template on physical access, which generates
node N2.

Node N2 matches the middle node of the second template.   The attacker profile indicates
that the attacker has physical access to machine B, but not to machine A.  Since N2 is an
OR node, it can be satisfied by the attacker becoming root on B.  In this example, node N3

is created with a subset of  the machines in node N2.  Alternatively, we could have
generated an intermediate node for becoming root only on B rather than A or B.  The
advantage of this is that additional paths to the goal or start can pass through this
intermediate node.  When both goal and start nodes are specified, either method is likely
to work, since if this node is required for a path, it will be generated later.  If only one of
goal and start are specified, the more verbose method may be advantageous.  We
recognize node N3 as a start node in this graph, and thus we do not try to match
backwards from it.  Although it is not shown, the attack graph would also contain a node



8

for A similar to N3 which, like nodes N4 and N5, is unreachable because the attacker has no
physical access to A.

When a node is matched with a template in the database, the other endpoint could either
be generated as in the example above, or be a node already generated.  Thus the generator
must be able to efficiently search the nodes generated so far.  Edges created between two
nodes already generated can lead to interactions between attack templates and the
“discovery” of new attack sequences.

The instantiation function may generate multiple nodes if reachability is a condition on an
edge and there are multiple routers between a pair of machines (see the example in section
5).  The steps necessary for routing a message, telnet session, etc., are explicitly included
in the attack graph because this access is an important security parameter.  If a worrisome
attack path involves going through multiple routers, the system administrator has the
option of modifying the access control tables to forbid the access.

There are a number of implementation issues which must be resolved when the system is
tested on large datasets.  For example, it may be useful to allow some hierarchy in the
attack graph generation.  If there is a common set of attack paths that allow an attacker to
become root from a normal user account on the same machine, this could be a useful
building block.  If multiple machines have identical parameters, this subgraph need only be
built once.  It can be collapsed to one edge, with the option of expanding the graph for the
system administrator via the user interface.

For each piece of the configuration or attacker profile files, it would be useful to maintain
a list of edges whose probability was influenced by that attribute.  This will allow quick
recomputation of edge weights if a configuration or attacker parameter is changed.
However, it is more challenging to leave such a “trail” for pieces that were missing in the
configuration file or lead to edges not existing.

Instantiation functions could become quite complicated.  For example, suppose one is
searching for the universe of possible consequences from a break-in.  In “spam” attacks on
networks, an attack is replicated on many machines.  If one wants to predict the number of
machines compromised, the instantiation function must have an inclusion/ exclusion
calculation if the weights are probabilities.

There are two possible ways to represent the users and/or machines in a node: as an
explicit list, or as a list of conditions (from edge conditions).  Since each condition is
associated with an instantiation function, one can go from condition lists to explicit user
lists.  One could imagine that both representations could be used in different parts of the
attack graph during generation depending upon the ways the lists will be refined.  For
example, the list-of-conditions method may be better for matching.

Another issue is how to model attacks that require access to two different user accounts
possibly on two different machines.  This could be done as a 2-step process in the attack



9

template. However, in the attack graph, getting access to two users' accounts is highly
correlated within the various attacks, and this correlation must be incorporated into the
both instantiation functions.  Therefore, obtaining access to two or more accounts should
probably be combined as a single atomic event.  Since we expect most attacks to require
access to only a small number of accounts simultaneously, this consolidation/duplication
should not increase the size of the graph too much.

Matching methods will evolve experimentally.  However, unification techniques used in
logic programming languages are a natural starting place.  It is possible that using lists of
conditions, one can search the set of generated nodes efficiently using hashing techniques.

 4. Analysis Methods
After the attack graph is generated by the procedure outlined above, some analysis tools
are needed to identify the attack paths which are most likely to succeed in a particular
threat scenario.  We are currently using a shortest-path algorithm.  These algorithms
generally compute the best paths from a source to all other nodes.  Bicriteria shortest-path
algorithms can be used to compute strategies that, for example, maximize the probability
of success within a fixed budget constraint.  Current exact solution methods involve
shortest-path computations in significantly expanded graphs.  However, scaling provides a
graceful tradeoff between approximation quality and the time and space needed to
compute the solution (Phillips).  Very recently, Tayi et al. have shown how to compute all
undominated (Pareto optimal) paths for multiple edge weights using a psuedo-polynomial
time algorithm.  Efficiently solving variants with many more than two optimization criteria
is an open problem.  In practice, the success probability or cost of an attack depends upon
the attacker's experience.  We would like to develop new single-cost shortest-paths
algorithms to incorporate adaptive attacker experience (experience increases as the attack
progresses).  An issue for these augmented algorithms is quality of the larger, more
complex, and more speculative input data set.

Another research issue is computation of cost-effective defense strategies.  Given a set of
possible defenses, each with a cost (financial, loss-of-service, etc.), we would like to
compute a set of defenses to implement which will maximally decrease the probability of
success (or increase attacker cost).  We expect this to be a challenging problem because
implementing a defense strategy on a particular machine could have a wide-spread effect
on the attack graph.

Alternatively, a system administrator could use the attack graph as the foundation for a
simulation tool.  The simulation could start from the node where the attacker breaks in,
and follow high probability paths until the attacker fails, in which case the simulation can
backtrack to an earlier node and try another path. This kind of a model could represent the
real behavior of attackers (going down one branch, figuring that it is too difficult to do
something such as get root on a particular machine, so backing up and trying another
method).  Another strategy would be that the attacker chooses his next attack arc based
on configuration knowledge of all outgoing links, plus an estimate of the shortest path
from neighboring nodes. This simulation technique would be very appropriate for a



10

graphical user interface which could show a network designer the paths the attacker is
most likely to take (for example, by lighting up nodes with a green light as the attacker is
successful, and displaying a red light where the attacker gets blocked).

Finally, we would like to investigate generating and pruning exhaustive graphs from the
recursive algorithms used in solving event trees.  Selective pruning of insignificant paths
will be a key aspect of a solution method.  The algorithm of (Naor and Brutlag) uses a
canonical representation for all epsilon-optimal paths.  This would allow us to generate all
paths that are no more than epsilon larger than the shortest path, and also allow for the
identification of arcs (attack “edges”) which are common to many of the epsilon-optimal
paths.

5. Example:  Password Guessing
This section presents an example of the graph-based vulnerability assessment method,
specifically a password guessing attack on a small network.  The network, shown in
Figure 3, is small but has a somewhat complex topology and also has many of the main
technologies we are interested in modeling:  an ATM-switched network, an Ethernet
network, two routers of differing types, a firewall to the Internet, SGI workstations, and
SUN workstations.

Figure 4 is an attack template showing several possible ways to gain illegal access to a
machine by password guessing.  For example, an attacker can use anonymous ftp to plant
a trojan horse which when executed mails him back the password file.  He then can run a
password cracking program on the password file.  Or, if the attacker has a sniffer and
sniffs the password, if the password is plaintext, the attacker can login as a normal user
with that password.  As shown in Figure 4, attack templates are multigraphs.  That is,
there can be multiple edges between two nodes indicating different attack methods.  For
example, in Figure 4, trojan horses can lead to attacker acquisition of the password file in
three different ways.  We chose password guessing because it is a common attack
estimated to be used in approximately one-quarter of attacks, based on the analysis of
incidents reported to the Computer Emergency Response Team (CERT), in the
dissertation by John Howard, 1997.  This example is not meant to be exhaustive even for
password guessing.  In general an assessment is only as complete as allowed by the
coverage of the database.

Attack graphs assume a start and/or goal state.  For this example, we assumed that the
attacker had access to a normal user account on the Sun workstation SUN1.  That is, the
attacker could be an insider with an account on SUN1 or could have gained access to
SUN1 from the Internet by getting through the firewall.  The file server in this network is
the Silicon Graphics workstation SGI1 on the Ethernet network.  We assumed that the
attacker’s goal was to access protected data files on the file server SGI1.  The starting and
goal states are specified in the attacker profile.  Only one of these is needed and the attack
graph can be built from that point.  In this example, however, we specify both.



11

Figure 5 shows the attack graph generated from the password-guessing attack template
and the network configuration information.  This graph shows specific steps the attacker
would take to get the protected files.  We will not step through the graph generation in
detail, but the overall idea is that the user on SUN1 is going to try and access an account
on SGI2.  From there, she sniffs the password of a user on the broadcast Ethernet network
who is logging into SGI1.

This graph was generated as follows:  the start node (the attacker having access to a
normal user account on SUN1) matches the conditions of the lower start node on the
password-guessing template (normal user on a machine M).  From the template start node,
there are two paths, one involving email and one involving anonymous ftp.  The graph-
generation algorithm checks the configuration file to see if email is enabled between SUN1
and SGI1.  It is not, because SGI1 is configured to be a protected server which only has
privileged users who must logon for access.  Likewise, anonymous ftp is turned off on
SGI1.  However, SGI2 has these services.  Thus, the paths of planting a trojan horse via
email or obtaining the password file via anonymous ftp are matched to the SGI2 where
SGI2 is machine B on the attack template. To access SGI2 via ftp or email, the packets
must go through both the NetEdge and Cisco routers.   This is information that is in the
configuration file.  These show up as states in the attack graph because they represent
stages necessary to perform the ftp or email actions.  (Note:  this approach can help show
where it will be beneficial to prevent attack.  For example, one could configure the routers
to not allow any traffic from the ATM network to the Ethernet network).

Note that the start node did not match the upper start state in the password template based
on the sniffing route.  That is because SUN1 is on an ATM network, which is a switched
packet network.  It is very difficult to sniff packets on a switched network but relatively
easy to do on a broadcast network.

Follow the attack graph to the “normal user on SGI2” node.   The intermediate nodes
between SUN1 normal user and SGI2 normal user are an instantiation of the password
template states, based on our actual test network.  Now the graph generation algorithm
examines what states on the attack template match “normal user on SGI2.”  The lower
start node matches “normal user on SGI2” but it doesn’t match the subsequent nodes
because email and ftp are disabled on SGI1.  We have assumed in the attacker profile that
the attacker has access to a sniffer for broadcast Ethernet networks that requires root
capability.  These are publicly available; we downloaded one from the web.  We have also
assumed that the attacker can get root access on SGI2 once she is a normal user on SGI2
(there are a variety of attack templates which could outline how to get from normal user
to root on a machine, including use of a toolkit, physical access, etc.).  From root on
SGI2, the attacker can install the sniffer to listen to the Ethernet traffic.  So, the attacker
can sniff the password of a privileged user or the system administrator logging into SGI1.
With that, she will have access to the files on SGI1.

During the attack-graph generation, each edge is labeled with the probability of that the
attacker will successfully transition between the two adjoining nodes.  Some of the



12

probabilities are based on knowledge of the frequency of events.  For example, the
probability that a person will click on an email attachment and run it is fairly high.  We
estimated it at .9.  Other probabilities will be based on configuration information and
attacker skill level.  An edge in the attack template could have several probabilities for
different conditions and attacker skill level, and these will be generated by the instantiation
function on the edge.  For example, the function to generate the probability for
successfully sniffing the packet containing the password could be a function of the number
of users and the frequency of login for each user over the network.  For another example,
the configuration file will indicate whether traffic going to M is encrypted or not.  It the
traffic is plaintext, then the probability of successfully guessing the password when it is
sniffed is  1.  If the password is encrypted, then the edge has probability 1 if the attacker
possesses the key (as indicated in the attacker profile).  Otherwise, it is set to some
probability according to the instantiation function (either a probability based on attacker
experience or financial ability, or 0 if it is assumed that the profile is complete in regard to
key possession).   The probabilities we used may not be very representative:  more
research is needed to obtain more accurate probability estimates.  Alternatively, “level of
effort” estimates could be used on the arcs.

Finally, we used a shortest-path algorithm to find the path that has the highest probability
of success.  This path is shown in Figure 5 by the gray-colored nodes.  To obtain this path,
we modified a shortest-path code that was publicly available on the web.  This code is
called  SPLIB, version 1.3, December 20, 1996, written by Cherkassky, Goldberg, and
Radzik. SPLIB contains codes, generators, and generator inputs for shortest-path
algorithms.  We used one of the shortest-path algorithms based on the Dijkstra algorithm.

Figure 6 shows the steps necessary to modify the probabilities so they can be used as input
to a shortest path algorithm: the problem was turned from a maximization into a
minimization by multiplying by -1, and from a multiplication of arc probabilities to addition
of the logs of the arc probabilities.  The most successful path had a probability of success
of 1*0.98*0.95*0.75*0.98*1*0.95=0.65.

We built a test network of the network shown in Figure 3.  We found that implementing a
test network is a useful tool for understanding attacks, identifying various paths, and
getting a sense of the probability of success for various attacks by having different people
attempt them.



13

6.  Conclusions
We have spoken with computer security experts, and general consensus is that an attack-
graph analysis should work well for modeling enterprise-level (commercial or military)
network risks.  We would like to take this work further and develop a robust tool with a
graphical interface which is easy to use and which links to a large list of vulnerabilities,
such as the databases that commercial vendors (i.e., Internet Security Systems’ X-force
database) have created or that CERT has compiled.

This paper has presented a method for risk analysis of computer networks.  The method is
based on the idea of an attack graph which represents attack states and the transitions
between them.  The attack graph can be used to identify attack paths that are most likely
to succeed, or to simulate various attacks.  The attack graph could also be used to identify
undesirable activities an attacker could perform once they entered the network.  The major
advance of this method over other computer security risk methods is that it considers the
physical network topology in conjunction with the set of attacks.  Thus, it goes beyond the
scanning tools that are currently available which check a “laundry list” of  services or
conditions that are enabled on a particular machine.

The method we have presented addresses many of the modeling issues that a traditional
PRA method such as fault trees do not.  Specifically, our graph-based approach allows for
modeling dynamic aspects of the network (this can be done by overwriting the
configuration file as the attacker makes system changes).  Our approach allows for several
levels of attacker capability, and can capture the learning behavior of the attacker by
adding capabilities to the attacker profile as the graph gets built.  It allows for the
modeling of user access levels and transitions between them, which are critical in network
security.  And it represents the time dependencies in sequences of attacks.

There are potential limitations with our method. We have not generated a realistic size
attack graph based on 10 or 20 templates, and we have not resolved all of the issues
associated with the matching of templates to configuration and attacker profile.  Also, the
existence of attack templates and of the configuration file could be another vulnerability in
itself.  If these got into the wrong hands, they would be very valuable tools for the
attacker.   However, we believe that the approach we have presented is an advance in
network-vulnerability modeling and will ultimately help network security if implemented in
a reasonable way.

Acknowledgments

The basic notion of an attack graph is due to Fred Cohen of Sandia National Laboratories.
The authors thank Greg Wyss and John Howard of Sandia National Laboratories,  and
Jean Camp at the Kennedy School of Government/Harvard University for helpful
discussions.



14

References
Cherkassky, B. V., A.V. Goldberg, and T. Radzik.  "Shortest Paths Algorithms: Theory
and Experimental Evaluation," Math Programming, 73, pp.129--174, 1996.

Gaylor, T. and L.J. Camp.  “Draft report for Risk Based Characterization of Network
Vulnerability LDRD:  Current Results of Task 1.”  Sandia internal memo, May 30, 1997.

Harris, David L.  “Hostile Applet Scenarios.”  Internal Sandia memorandum.  September,
1997.

Howard, J. D.  “An Analysis of Security Incidents on the Internet, 1989-1995.”  Doctoral
dissertation, Carnegie Mellon University, 1997.

Internet Security Systems, Inc. 41 Perimeter Center East, Suite 550, Atlanta, GA 30346.
Creator of the X-force database, accessed via http://www.iss.net/xforce.

Naor, D. and D. Brutlag, "On suboptimal alignment of biological sequences," Proceedings
of the 4th annual Symposium on Combinatorial Pattern Matching, Springer Verlag,
1993, pp. 179-196.

Painton, L.A. “Draft report for Risk Based Characterization of Network Vulnerability
LDRD:  Preliminary Investigation of Risk Assessment Methods (Task 2).”  Sandia internal
memo, March 17, 1997.

Phillips, C. A., "The network inhibition problem,"  Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, May 16-18, 1993, pp. 776-785.

Presidential Commission on Critical Infrastructure Protection.  Commission Report
“Critical Foundations:  Protecting America’s Infrastructures,”  October 1997. Available at:
http://www.pccip.gov/report_index.html

SATAN. (Security Administrator Tool for Analyzing Networks) tool.  SATAN’s creators,
Mr. Dan Farmer and Mr. Wietse Venema, made SATAN widely available over the
Internet without cost starting April 5, 1995.  It can be obtained from the web site:
http://142.3.223.54/~short/SECURITY/satan.html

Stack, D. W., and M. S. Hill.  “A SETS User’s Manual for Vital Area Analysis,”
SAND83-0074 and NUREG/CR-3134.  Prepared by Sandia National Laboratories for the
U.S. Regulatory Commission, Washington D.C., 1984.

Tayi, G., Rosencrantz, D. and S. Ravi.  “Path Problems in Networks with Vector Valued
Edge Weights.”  Submitted for publication, October 1997.

Wyss, G. D., Schriner, H. K., and T. R. Gaylor (1996). “Probabilistic Logic Modeling of
for Hybrid Network Architectures.”  Published in the Proceedings of the 21st IEEE
Conference on Local Computer Networks.



15

user level: anon ftp
machine:
capabilities:
vulnerabilities:
state:

anon ftp enabled

user level: anon ftp
machine:
capabilities: read, write, delete
  files in ftp directory
vulnerabilities:
state:

attacker changes permissions

ftp owns ftp directory

Figure 1.  Example template for anonymous ftp attack



16

M

A B

user level: normal
machine: M1

user level: normal
machine: M2

•rlogin enabled on M_2
•user has rlogin file

•user has accounts on
machine M_1 and M_2

user level: none
machine: X
capabilities:Physical access
to X, Boot CD

user level: root 
machine: X

Unix machine
rlogin enabled

Unix Machine Unix machine

Hacker gains normal
user status on
Machine M

Network Configuration

Attack Templates Attack Graph

Template 1: rlogin

Template 2: Physical Access

rlogin from B

access to all
users on B

GOAL STATE

user: root
mach: M

All users with rlogin 
to M from A or B:
User 1, Mach. A
User 2, Mach. A
 …
User k-1, Mach. B
User k, Mach. B

Reboot
off the CD user level: none

machine: B
capabilities:Physical 
access to B

user level: root
machine: A or B

reboot off CD

Attacker has 
physical access

N1N4

N2

N3user level: normal 
machine: X

access to 
users on X

user: 
mach: M
capabilities: physical 
access to M

N5

Figure 2.  Graph Generation Example



17

Figure 3.  Test Network

   Ethernet           ATM ATM
Internet

    ATM
                  Ethernet           FDDI

    SUN2

       

          Ethernet

SGI1                SGI2

Machine class:router

Hardware: NetEdge
Machine class:
Firewall

Machine class: router
Hardware: CiscoSUN1      

Machine
class:
workstation
Hardware:
SUN
Network:
ATM

 Machine
class:
ATM  Switch
HW: ASX200

Machine
class:
workstation
Hardware:
SUN
Network:
ATM

Machine class:
workstation
Hardware: SGI
Network: Ethernet
Users: privileged
users or sys admin
Configuration: email,
telnet, ftp not enabled

Machine class:
workstation
Hardware: SGI
Network: Ethernet

Machine class:
Ethernet Hub
Hardware:Synoptics



18

User: none
Mach: 
Capabilities: 
email in mbox of 
user on B

User: normal
Mach: M

User:root
Mach:  M
Capabilities:
Sniffer with access to
Ethernet that M is on

User: normal
Mach: B

User:  root
Mach: M

User: anon
Mach: B

User: 
Mach:
Capabilities: obtained 
password file for B 

Capabilities: 
Obtained password for 
normal user on B

User: 
Mach:
Capabilities: Trojan 
horse on B 

sniff password

password plaintext

password encrypted
attacker has key

email enabled 
between M and B

anon ftp on B
M can access B

/etc and anon. ftp are commonly owned directories

anon ftp not configured correctly

user runs 
executable 
in email

PW file emailed back

backdoor to PW file

PW file ftp’ed back

guess 
password

run a 
password guessing 
program such as 
‘Crack’

Figure 4.  Password Guessing Attack Template

GOAL STATE

START STATE

START STATE

User: root
Mach: M
Capabilities: 
Possess sniffer

M on Ethernet
Install sniffer

user name on 
B known



19

SUN1
Normal

User

Hacker
Login

as
Anonymous

Cisco
Router

Trojan Horse
planted
on SGI2

NetEdge
Router

Normal
User on

SGI2

Hacker
obtains

SGI2 PW file

p=1

Pass Traffic
from ATM network

p=.98

SGI2
has anon. FTP

p=.95

p=.8

SGI2 user
gets email

p=1

PW file FTPed back, p=.7

Cracker program
p=.98

Anon. FTP not configured correctly
p=.75

/etc and anon. FTP directory commonly owned
p=.7

Backdoor, p=.6

PW file emailed back
p=.75

Guess PW
p=.4

Obtain PW
of user on

SGI1

Hacker is user
on SGI1 and

accesses
protected files

Loginto SGI1 with
password

p=1

Install Sniffer
p=1

Attack Graph:
Password Guessing

on Test Network

Goal State

Obtain root
user on
SGI2

Attack template for gaining
root access from

normal user access

Figure 5.

SGI2 user
has email
in mbox

SGI2 user executes
email attachment

p=.9

Root user
on SGI2

with Sniffer
installed

Sniff Password of
Privileged User

p=.95



20

Figure 6. Shortest Path Algorithm Solution Method

Goal:  Find the path with the highest probability of success

Steps:
1.  Assign probabilities to all arcs in the network
2.  Label arcs and nodes
3.  Convert probabilities to natural logarithms
4.  Multiplying probabilities is the same as adding logs:
 a*b=c à ln(ab)=ln (c), ln(a) + ln(b) = ln(c)
5.  Maximizing the probability of success is the same as minimizing the negative probability of success:
 Convert all the logs to positive numbers by multiplying by -1
6.  The shortest path code only takes integer arc lengths, multiply by 10,000
7.  After the shortest path is obtained, take the total distance, multiply by -1, divide by 10,000.
      Raise e to this power to obtain the highest probability path length.   



21

Distribution:

1 Ann Bouchard, 5838 MS 0780
1 Douglas Brown, 4621 MS 0806
1 Allen Camp, 6412 MS 0747
1 Frederick Cohen, 8910 MS 9011
1 Richard Craft, 6232 MS 0449
1 David Harris, 6238 MS 0451
1 John Howard, 8910 MS 9011
1 Dianne Marozas, 6235 MS 0451
1 Brian Matt, 9223 MS 1109
1 Judy Moore, 6234 MS 0449
1 Larry Moore, 6237 MS 0451
1 Martin Murphy, 6231 MS 0449
5 Cynthia Phillips, 9222 MS 1110
1 Michael Sjulin, 4914 MS 0812
10 Laura Painton Swiler, 6411 MS 0746
1 Samuel Varnado, 6200 MS 0431
1 David Womble, 9222 MS 1110
1 Gregory Wyss, 6412 MS 0747

LDRD Review Committee:
1 Ray Bair, 1200 MS 0511
1 Robert Cranwell, 6411 MS 0746
1 Laura Gilliom, 6232 MS 0451
1 Nestor Ortiz, 6400 MS 0736

LDRD Program Office:
2 Charles Meyers, 4523 MS 0149

1 Central Technical Files, 8940-2 MS9018
5 Technical Library, 4916 MS0899
2 Review & Approval for DOE/OSTI, 12690 MS0619


	Abstract
	CONTENTS
	1. Introduction
	2. Configuration Files and Attack Templates
	Configuration files
	Attacker Profiles
	Attack template

	3. Generating the Attack Graph
	4. Analysis Methods
	5. Example: Password Guessing
	6. Conclusions
	Acknowledgments
	References
	Distribution

